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Phase diagram of the Biham-Middleton-Levine traffic model in three dimensions
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We study numerically the behavior of the Biham-Middleton-Levine traffic model in three dimensions. Our
extensive numerical simulations show that the phase diagram for this model in three dimensions is markedly
different from that in one and two dimensions. In addition to the full speed moving as well as the completely
jamming phases, whose respective average asymptotic car speedsual one and zero, we observe an
extensive region of car densitigswith a low but nonzero average asymptotic car speed. The transition from
this extensive low average asymptotic car speed region to the completely jamming region is at least second
order. We argue that this low speed region is a result of the formation of a spatially limited-extended perco-
lating cluster. Thus, this low speed phase is present iirthe8)-dimensional Biham-Middleton-Levine model
as well.[S1063-651X99)10811-0

PACS numbg(s): 64.60.Ht, 45.70.Vn, 05.70.Fh, 89.4¢k

. INTRODUCTION where the critical density!? is numerically found to be
With ever increasing computational power, simulatingabout 0.31[1] and is analytically proven to be less than 1/2
traffic in the microscopic level by means of cellular automa-[4]. In addition, Tadaki and Kikuchi found a more subtle
ton (CA) has become a real possibility. One of the simplesiphase transition related to the final jamming pattern. Their
models for city traffic of this kind is the so-called Biham- numerical study showed that jamming patterns for car den-
Middleton-Levine(BML) traffic model[1]. sity p less than about 0.52 are very well self-organized. On
The one-dimensional BML model is simply the elemen-the other hand, whep is greater than 0.52, the jamming
tary binary CA rule 184 operating on a one-dimensional lat-patterns are randofis].
tice with a periodic boundary condition. The asymptotic car Extension of the BML model to higher dimensions can be
speed(v) in this one-dimensional model is exactly known, regarded as a highly simplified model for computer network
and is given by communication in a hypercube. And from the physics point
of view, it is natural to investigate the phase diagram as well
1 if p<1/2 as the upper critical dimension of the BML model in higher
' dimensions. As a pioneer study, we report the result of an
1 1 if U2<p=1 (1) extensive numerical study of the BML model in three dimen-
p ' sions in this paper. We find that the three-dimensional model
has a richer phase diagram than that in one and two dimen-
sions. In addition to the fluctuation-induced first order phase
transition in{v), we also observe a lobut nonzerp speed
phase.

(v)=

wherep is the car density in the systejf]. In other words,
in the one-dimensional BML model, a traffic jam occurs only

ihg i (1) . . . . .
when the car density is equal to E=p¢™ and all cars move To begin, we first introduce the higher dimensional gen-

in full speed yvhene_veps 1/2. ) . eralization of the BML model in Sec. Il. Then, we report our
The two-dimensional BML model considers the motionsgjmylation results in Sec. IIl and present our analysis of re-

of north- and east-bound cars in a two-dimensional squargts in Sec. IV. Finally, we draw our conclusions in Sec. V.
lattice with periodic boundary conditions in both the north-
south and east-west directiorfgVe shall give the exact rules

for the two-dimensional BML model in Sec. )IAlthough Il. THE BML MODEL
we lack an exact analytical expression for the average ) " .
asymptotic car spee(/) as a function of car density in the Let us introduce the modified BML model in dimen-

two-dimensional BML model, extensive numerical simula-Sions below. Consider an-dimensionalN; XN, - - XN,
tions[1] as well as mean field theory studigg] have been Sduare lattice with periodic boundary conditions. Each lattice

carried out. Their results strongly suggest a fluctuationSite VY”' either contain no C?‘(th?‘t is, an empty sijeor
induced first order phase transition {&). Moreover, the contain exactly one car moving in tfe direction. We de-

average asymptotic car speed is likely to follow note p; the density of cars moving along . (That is, p;
equals the number of cars moving along halirection di-
1 for 0<p<p®?, vided by the total number of cars in the systekiVe denote
(v)= @) ¢ (2)  the total car density of the system py=Xp; and we define
0 for p>pc~, the car density vector bp=(p1,p-, ... .pn). Initially, cars

are placed randomly and independently onto the
n-dimensional square lattice according to a predetermined
*Electronic address: hfchau@hkusua.hku.hk car density vectop.
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The dynamics of the cars are governed by the following -2 L NS L E s B B B

rules. Eache;-moving car advances one site along the 0.9 F \ 3332 ) | ' ' 1
direction provided that no car blocks its way. Otherwise, that o .s [ A 0ses ) 1 -
él-moving car stays in its present Iocation.AParaIIeI update is .7 [ : Z: z: :\ 1]
taken for alle;-moving cars. After this, each,-moving car 0.6 | 0 9% 65 005 010 0186 0.20-
advances one site along tﬁ@ direction if no car blocks its a4 5 [ e ]
way. Otherwise, thaéz-moving car stays in its present loca- 3 0.4 L 002y ]
tion. Agairl, parallel updating is used. This process goes on S L R 1
until eache,-moving car is given a chance to move. This o sl ]

marks the end of one timestep and the above car moving
process is repeated over and over again. 0.1 ¢
At each timestep, the car speed is defined as the ratio o o.
number of cars moved to the total number of cars in the
lattice system. And the average asymptotic car sgeeds
defined as the car Speed aVeraged over both the CyCIe time FIG. 1. The car densit)b VS average asymptotic car Spdeq
and initial car configurations. Since we are interested in theéor the three-dimensional BML model on a 29Q00x 100 lattice.
behavior of the system in thermodynamic limit, we only con-in the two inserted blowups, one clearly observes the drofv pf
sider the limit wherN(,N,, ... N, all tend to infinity while  from 1 toN/(N+1) atp=0.01 as well as a very small bump just
keeping the aspect ratio between each side fixed. below the first critical densit;pg):o.lsit 0.01. In addition, one
We define ther-dimensional BML traffic model to be the also observes thaty) reaches zero at the critical car denaiiéz)
one with aspect ratio between each of theides being fixed =g 32+0.02.
to 1. That is to say,N;=N,=---=N,. Also, an

n-dimensional BML traffic model is called homogeneous if recurrent states form cycles with periods several ten times
and only if p;=p; for all i,j [6,7]. In this paper, we concen- he jinear lattice siz&\. As the car density reaches about
trate on the homogeneous three-dimensional BML traﬁ'%.O%ZIN, (v) drops to the valueN/(N+1)=100/101
model. So for simplicity, we shall simply call it the three- _.99099 and stays constant unilreaches about 0.10. In
dimensional BML model whenever confusion is not pos-thjs car density region, recurrent states form cycles of period
sible. From this definition, it is clear that the averagejgi—N+ 1. In other words, in the recurrent state, each car in
asymptotic car spee() is a function ofp only and its value  he system will be blocked exactly once in each cycle. For
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lies between zero and one. the 100<100x 100 lattice, (v) is slightly greater than
N/(N+1) as 0.16=p=<0.17. A similar but much smaller
l1l. SIMULATION RESULTS bump in(v) is also observed in the 2800x 200 lattice.
OF THE THREE-DIMENSIONAL BML MODEL Hence, we conclude that the bump is due to finite size effect

of the lattice. Typical recurrent states in this car density re-

. ?lér S|n1|ula}[t|on |fssperf§rmed 033 va'lor\lle:]y of n:(a;:htl_nesgion are cycles of perioe=100N. Moreover, the typical re-
Inciuding clusters ot sun sparc and Dec Alpha WOrkStations,, -4, time for a random configuration in this range of car

\é?arlzous Pentlum—tt)ase_lthC st'andt F;IO\tN?rIPCCPiJat'S we.II asbth ensity appears to scale exponentially with In fact, the
supercomputer. 1he estimated tota Ime IS aboy ng relaxation time forbids us from performing systematic

300 mips years. Even S0, owing to our CPUtime I.'m'tatlons%simulation with lattice size greater than 20000x 100.
we can only systematically simulate up to a lattice size o

. Clearly, the exponentially long relaxation time signals a criti-
100X 100X 100. Nonetheless, we have also simulated for theCal slgwdownxp ylong 9

cases of very small and very large car densities up to a lattice . _
size of 100X 1000< 1000 before finally drawing our con- As the car density reaches ab@@)—o.l& 0.01, <V_>
clusions. drops abruptly to about 0.015. Since the asymptotic car
Figure 1 shows the vs(v) curve for the BML model in speeds in all our simulation data are either greater than or
a 100x 100x 100 lattice. Each data point in the figure repre-€dual toN/(N+1) or less than 0.03, we strongly believe that
sents the average asymptotic car speed over an ensemblet@® observed sudden drop ) is a result of a first order
random initial configurations. Fop<0.1 as well asp phas_e tra_nsmon. Interestingly, the periods of the recurrent
>0.22, the value ofv) is obtained by averaging over 1000 configurations of all these Iqw but nonzero speeq states are
initial configurations. In contrastv) for 0.1<p<0.22 is  €qual toN. When we further increase the car dengity (v)
obtained by averaging over only 50 random initial configu-gradually decreases until it finally reaches zero pg!
ration because the long relaxation time prevents us from ob=0.32+0.02.
taining more samples. Figure 1 tells us thaf=1 when the In summary, our simulation tells us that for a finite
car densityp=<0.005=1/2N. We call this region the “full X NXN lattice, the system exhibits a nontrivial “high speed
speed phase.” Moreover, recurrent states in the car densitegion” with (v)=N/(N+1) as well as a nontrivial “low
region are cycles of period 160N. (The dependence of speed region” with(v)=<0.03. Thus, in the thermodynamic
various parameters dd here and hereafter are based on ourlimit, the three-dimensional BML model has a full speed
simulation results in various lattice sizes up to 18000 phase, a low speed phase, and a completely jammed phase.
X 1000, including various odd, even, and prime valuesl.of  (Moreover, just like the two-dimensional case, the com-
As p increases to about 0.841/N, (v) begins to drop. The pletely jammed phase may further be divided into the self-
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FIG. 3. A typical evolution of car density vs asymptotic car
speed({v) in a 100x100x 100 lattice when we drive the system
slowly as discussed in the text. The solid and dashed curves repre-
sent the evolution of the system when cars are slowly added to and
removed from the system, respectively.

B. The transition to low-speed phase

Since we cannot find any intermediate speed asymptotic
configurations in our simulation, the transition from the high
to low speed phase is likely to be first order. To further
investigate to the nature of this transition, we drive the sys-
tem by slowly adding cars to or removing cars from the
system. That is to say, starting frop=0, we increase the
car density by a fixed small amoutp by randomly intro-
ducing cars to the empty sites in the system. And then, we
evolve the system until it relaxes to a recurrent state. We
repeat the process until reaches one. After this, we de-
crease the car density of the system by by randomly
removing cars from the system. And then, we evolve the
system until it reaches a recurrent state. We repeat this pro-
cess untilp becomes zero. The vs (v) graph obtained in

this way on a 108 100X 100 lattice with Ap=0.001 is
organized jamming and the random jamming regipiifie  shown in Fig. 3. Clearly, as we slowly increase the car den-
transition from the full speed to the low speed phase is firssity p, transition to the low speed phase occurs at car density
order in nature and the transition from the low speed phase taround 0.22, which is slightly higher than the critical car
the completely jammed phase is smooth. That is to say, thigensity p(s)%0.18, More dramatically, as we slowly de-

.. . C1
transition is at least second order. crease the car density, transition to the high speed phase

occurs at car density around 0.07, which is much smaller
than the critical car densitypfi). The observed hysteresis

loop confirms the hypothesis that this is a first order phase
A. The full speed phase transition. And since the only nonlinearity in the model

In addition to the systematic trend that the critical caromes from thg gxc[usmn VO'Pme. effect, we conclude that
tge phase transition is fluctuation induced.

density from the high to low speed phase strictly decrease
with spatial dimension, we observe an interesting feature in ) ,

the high speed phase of the three-dimensional BML model. C- The low speed phase and the completely jamming phase
Unlike the one- and two-dimensional models, the recurrent Unlike its one- and two-dimensional counterparts, the
configurations for any finiteNXNXN lattice in the high three-dimensional BML model has a low speed phase with
speed region withp=1/N form cycles of periodN+1. A 0<(v)=0.03. Similar to the completely jamming configura-
typical high speed recurrent configuration in & 5X5 lat-  tions, we find that the recurrent configurations in the low
tice is shown in Fig. 2 as an illustration. Readers may verifyspeed phase contaiirected percolating clusters of cars.
that cars in these high speed configurations will be blocke®ut unlike the completely jamming configurations, we found
once per cycle periofi7]. Unfortunately, we do not have a a small number of residual freely moving cars in the low
good explanation why thiév)=N/(N+1) recurrent state is speed phase. Hence, the period of these recurrent states
preferred over thév)=1 recurrent state in three dimensions. equals the linear system sia¢ And since most cars are

FIG. 2. A typical high speed phase recurrent configuration of
period 6 in a 5X5X5 lattice. Readers may verify that each car in
this configuration is blocked exactly once per period.

IV. ANALYSIS OF OUR SIMULATION RESULTS
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FIG. 4. A typical low speed recurrent configuration in x5
X5 lattice making up of five full speed cars wifly)=1/14. We
denote the five full speed cars by bold arrows.

pletely jamming configuration. The situation is completely

different when the background lattice is at least three dimen-
sional. In this case, since both the trajectories of moving cars
and the percolating backbone are essentially one-
dimensional objects, trajectories of some moving cars may
not intersect with the percolating cluster. Thus, if the car

density is small enough, some residual freely moving cars
may present in a recurrent configuration giving rise to the
observed low speed phase.

As the car density gradually increases in the low speed
phase, the size of the percolating cluster in the recurrent
configuration increases. It becomes more and more difficult
for the system to accommodate residual freely moving cars.
Hence,(v) gradually decreases until it eventually reaches
zero. The transition from the low speed phase to the com-
pletely jamming phase is, therefore, smooth.

V. CONCLUSIONS AND OUTLOOK

In summary, we study the phase diagram of the three-
dimensional BML model. Similar to the two-dimensional
model, a fluctuation-induced first order phase transition in
asymptotic average car dens{ty) is observed at car density
p{)=0.18+0.01. We also discover a new low speed phase

which is absent in one- and two-dimensional models. We
argue that the existence of this low speed phase is geometri-
cal in nature, and hence this phase will exist in higher di-
mensional BML models as well. It is instructive to numeri-
cally verify our claims in the four-dimensional model.
Unfortunately, the amount of computation involved will
probably be too high for us at this moment. Finally, our
simulation suggests that the transition from the low speed
phase to the completely jamming phase is smooth and occurs
at car densityp{?)=0.32+0.02.

A number of open questions remain. For instance, we do
not understand why thév)=M/(N+1) high speed states
are preferred over thév)=1 full speed states in the three-

already jammed by colliding into the percolating cluster, thedimensional model. And it is meaningful to investigate if this
average asymptotic car speed is low. A typical low speeghehavior persists in higher dimensions.

recurrent configuration in a¥5Xx5 lattice is shown in Fig.

4 as an illustratiorf6].

. Reca}ll that a percolating bac_kbone is essentially a one- ACKNOWLEDGMENTS
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