
PHYSICAL REVIEW E NOVEMBER 1999VOLUME 60, NUMBER 5
Phase diagram of the Biham-Middleton-Levine traffic model in three dimensions

H. F. Chau* and K. Y. Wan
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China

~Received 3 May 1999!

We study numerically the behavior of the Biham-Middleton-Levine traffic model in three dimensions. Our
extensive numerical simulations show that the phase diagram for this model in three dimensions is markedly
different from that in one and two dimensions. In addition to the full speed moving as well as the completely
jamming phases, whose respective average asymptotic car speeds^v& equal one and zero, we observe an
extensive region of car densitiesr with a low but nonzero average asymptotic car speed. The transition from
this extensive low average asymptotic car speed region to the completely jamming region is at least second
order. We argue that this low speed region is a result of the formation of a spatially limited-extended perco-
lating cluster. Thus, this low speed phase is present in the~n.3!-dimensional Biham-Middleton-Levine model
as well.@S1063-651X~99!10811-0#

PACS number~s!: 64.60.Ht, 45.70.Vn, 05.70.Fh, 89.40.1k
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I. INTRODUCTION
With ever increasing computational power, simulati

traffic in the microscopic level by means of cellular autom
ton ~CA! has become a real possibility. One of the simpl
models for city traffic of this kind is the so-called Biham
Middleton-Levine~BML ! traffic model@1#.

The one-dimensional BML model is simply the eleme
tary binary CA rule 184 operating on a one-dimensional
tice with a periodic boundary condition. The asymptotic c
speed^v& in this one-dimensional model is exactly know
and is given by

^v&5H 1 if r<1/2,

1

r
21 if 1/2,r<1,

~1!

wherer is the car density in the system@2#. In other words,
in the one-dimensional BML model, a traffic jam occurs on
when the car densityr is equal to 1[rc

(1) and all cars move
in full speed wheneverr<1/2.

The two-dimensional BML model considers the motio
of north- and east-bound cars in a two-dimensional squ
lattice with periodic boundary conditions in both the nort
south and east-west directions.~We shall give the exact rule
for the two-dimensional BML model in Sec. II.! Although
we lack an exact analytical expression for the aver
asymptotic car speed̂v& as a function of car densityr in the
two-dimensional BML model, extensive numerical simu
tions @1# as well as mean field theory studies@3# have been
carried out. Their results strongly suggest a fluctuati
induced first order phase transition in^v&. Moreover, the
average asymptotic car speed is likely to follow

^v&5H 1 for 0<r,rc
(2) ,

0 for r.rc
(2) ,

~2!
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PRE 601063-651X/99/60~5!/5301~4!/$15.00
-
t

-
-
r

re

e

-

-

where the critical densityrc
(2) is numerically found to be

about 0.31@1# and is analytically proven to be less than 1
@4#. In addition, Tadaki and Kikuchi found a more subt
phase transition related to the final jamming pattern. Th
numerical study showed that jamming patterns for car d
sity r less than about 0.52 are very well self-organized.
the other hand, whenr is greater than 0.52, the jammin
patterns are random@5#.

Extension of the BML model to higher dimensions can
regarded as a highly simplified model for computer netwo
communication in a hypercube. And from the physics po
of view, it is natural to investigate the phase diagram as w
as the upper critical dimension of the BML model in high
dimensions. As a pioneer study, we report the result of
extensive numerical study of the BML model in three dime
sions in this paper. We find that the three-dimensional mo
has a richer phase diagram than that in one and two dim
sions. In addition to the fluctuation-induced first order pha
transition in^v&, we also observe a low~but nonzero! speed
phase.

To begin, we first introduce the higher dimensional ge
eralization of the BML model in Sec. II. Then, we report o
simulation results in Sec. III and present our analysis of
sults in Sec. IV. Finally, we draw our conclusions in Sec.

II. THE BML MODEL

Let us introduce the modified BML model inn dimen-
sions below. Consider ann-dimensionalN13N23•••3Nn
square lattice with periodic boundary conditions. Each latt
site will either contain no car~that is, an empty site! or
contain exactly one car moving in theêi direction. We de-
note r i the density of cars moving alongêi . ~That is, r i

equals the number of cars moving along theêi direction di-
vided by the total number of cars in the system.! We denote
the total car density of the system byr[(r i and we define
the car density vector byr[(r1 ,r2 , . . . ,rn). Initially, cars
are placed randomly and independently onto
n-dimensional square lattice according to a predetermi
car density vectorr.
5301 © 1999 The American Physical Society
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The dynamics of the cars are governed by the follow
rules. Eachê1-moving car advances one site along theê1
direction provided that no car blocks its way. Otherwise, t
ê1-moving car stays in its present location. Parallel updat
taken for allê1-moving cars. After this, eachê2-moving car
advances one site along theê2 direction if no car blocks its
way. Otherwise, thatê2-moving car stays in its present loca
tion. Again, parallel updating is used. This process goes
until each ên-moving car is given a chance to move. Th
marks the end of one timestep and the above car mo
process is repeated over and over again.

At each timestep, the car speed is defined as the rati
number of cars moved to the total number of cars in
lattice system. And the average asymptotic car speed^v& is
defined as the car speed averaged over both the cycle
and initial car configurations. Since we are interested in
behavior of the system in thermodynamic limit, we only co
sider the limit whenN1 ,N2 , . . . ,Nn all tend to infinity while
keeping the aspect ratio between each side fixed.

We define then-dimensional BML traffic model to be the
one with aspect ratio between each of then sides being fixed
to 1. That is to say, N15N25•••5Nn . Also, an
n-dimensional BML traffic model is called homogeneous
and only ifr i5r j for all i , j @6,7#. In this paper, we concen
trate on the homogeneous three-dimensional BML tra
model. So for simplicity, we shall simply call it the three
dimensional BML model whenever confusion is not po
sible. From this definition, it is clear that the avera
asymptotic car speed̂v& is a function ofr only and its value
lies between zero and one.

III. SIMULATION RESULTS
OF THE THREE-DIMENSIONAL BML MODEL

Our simulation is performed on a variety of machin
including clusters of Sun Sparc and Dec Alpha workstatio
various Pentium-based PC’s and Power PC’s as well as
SP2 supercomputer. The estimated total CPU time is ab
300 mips years. Even so, owing to our CPU time limitatio
we can only systematically simulate up to a lattice size
10031003100. Nonetheless, we have also simulated for
cases of very small and very large car densities up to a la
size of 10003100031000 before finally drawing our con
clusions.

Figure 1 shows ther vs ^v& curve for the BML model in
a 10031003100 lattice. Each data point in the figure repr
sents the average asymptotic car speed over an ensemb
random initial configurations. Forr,0.1 as well asr
.0.22, the value of̂v& is obtained by averaging over 100
initial configurations. In contrast,̂v& for 0.1<r<0.22 is
obtained by averaging over only 50 random initial config
ration because the long relaxation time prevents us from
taining more samples. Figure 1 tells us that^v&51 when the
car densityr<0.005'1/2N. We call this region the ‘‘full
speed phase.’’ Moreover, recurrent states in the car den
region are cycles of period 1005N. ~The dependence o
various parameters onN here and hereafter are based on o
simulation results in various lattice sizes up to 100031000
31000, including various odd, even, and prime values ofN.!
As r increases to about 0.01'1/N, ^v& begins to drop. The
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recurrent states form cycles with periods several ten tim
the linear lattice sizeN. As the car densityr reaches abou
0.02'2/N, ^v& drops to the valueN/(N11)5100/101
'0.99099 and stays constant untilr reaches about 0.10. In
this car density region, recurrent states form cycles of per
1015N11. In other words, in the recurrent state, each ca
the system will be blocked exactly once in each cycle. F
the 10031003100 lattice, ^v& is slightly greater than
N/(N11) as 0.10<r<0.17. A similar but much smalle
bump in ^v& is also observed in the 20032003200 lattice.
Hence, we conclude that the bump is due to finite size ef
of the lattice. Typical recurrent states in this car density
gion are cycles of period'100N. Moreover, the typical re-
laxation time for a random configuration in this range of c
density appears to scale exponentially withN. In fact, the
long relaxation time forbids us from performing systema
simulation with lattice size greater than 10031003100.
Clearly, the exponentially long relaxation time signals a cr
cal slowdown.

As the car density reaches aboutrc1

(3)50.1860.01, ^v&
drops abruptly to about 0.015. Since the asymptotic
speeds in all our simulation data are either greater than
equal toN/(N11) or less than 0.03, we strongly believe th
the observed sudden drop in^v& is a result of a first order
phase transition. Interestingly, the periods of the recurr
configurations of all these low but nonzero speed states
equal toN. When we further increase the car densityr, ^v&
gradually decreases until it finally reaches zero atrc2

(3)

50.3260.02.
In summary, our simulation tells us that for a finiteN

3N3N lattice, the system exhibits a nontrivial ‘‘high spee
region’’ with ^v&5N/(N11) as well as a nontrivial ‘‘low
speed region’’ witĥ v&&0.03. Thus, in the thermodynami
limit, the three-dimensional BML model has a full spee
phase, a low speed phase, and a completely jammed ph
~Moreover, just like the two-dimensional case, the co
pletely jammed phase may further be divided into the s

FIG. 1. The car densityr vs average asymptotic car speed^v&
for the three-dimensional BML model on a 10031003100 lattice.
In the two inserted blowups, one clearly observes the drop of^v&
from 1 to N/(N11) at r50.01 as well as a very small bump jus
below the first critical densityrc1

(3)50.1860.01. In addition, one

also observes that̂v& reaches zero at the critical car densityrc2

(3)

50.3260.02.
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organized jamming and the random jamming regions.! The
transition from the full speed to the low speed phase is fi
order in nature and the transition from the low speed phas
the completely jammed phase is smooth. That is to say,
transition is at least second order.

IV. ANALYSIS OF OUR SIMULATION RESULTS

A. The full speed phase

In addition to the systematic trend that the critical c
density from the high to low speed phase strictly decrea
with spatial dimension, we observe an interesting feature
the high speed phase of the three-dimensional BML mo
Unlike the one- and two-dimensional models, the recurr
configurations for any finiteN3N3N lattice in the high
speed region withr*1/N form cycles of periodN11. A
typical high speed recurrent configuration in a 53535 lat-
tice is shown in Fig. 2 as an illustration. Readers may ve
that cars in these high speed configurations will be bloc
once per cycle period@7#. Unfortunately, we do not have
good explanation why thiŝv&5N/(N11) recurrent state is
preferred over thêv&51 recurrent state in three dimension

FIG. 2. A typical high speed phase recurrent configuration
period 6 in a 53535 lattice. Readers may verify that each car
this configuration is blocked exactly once per period.
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B. The transition to low-speed phase

Since we cannot find any intermediate speed asympt
configurations in our simulation, the transition from the hi
to low speed phase is likely to be first order. To furth
investigate to the nature of this transition, we drive the s
tem by slowly adding cars to or removing cars from t
system. That is to say, starting fromr50, we increase the
car density by a fixed small amountDr by randomly intro-
ducing cars to the empty sites in the system. And then,
evolve the system until it relaxes to a recurrent state.
repeat the process untilr reaches one. After this, we de
crease the car density of the system byDr by randomly
removing cars from the system. And then, we evolve
system until it reaches a recurrent state. We repeat this
cess untilr becomes zero. Ther vs ^v& graph obtained in
this way on a 10031003100 lattice with Dr50.001 is
shown in Fig. 3. Clearly, as we slowly increase the car d
sity r, transition to the low speed phase occurs at car den
around 0.22, which is slightly higher than the critical c
density rc1

(3)'0.18. More dramatically, as we slowly de

crease the car density, transition to the high speed ph
occurs at car density around 0.07, which is much sma
than the critical car densityrc1

(3) . The observed hysteresi

loop confirms the hypothesis that this is a first order ph
transition. And since the only nonlinearity in the mod
comes from the exclusion volume effect, we conclude t
the phase transition is fluctuation induced.

C. The low speed phase and the completely jamming phase

Unlike its one- and two-dimensional counterparts, t
three-dimensional BML model has a low speed phase w
0,^v&&0.03. Similar to the completely jamming configur
tions, we find that the recurrent configurations in the lo
speed phase contain~directed! percolating clusters of cars
But unlike the completely jamming configurations, we fou
a small number of residual freely moving cars in the lo
speed phase. Hence, the period of these recurrent s
equals the linear system sizeN. And since most cars are

f

FIG. 3. A typical evolution of car densityr vs asymptotic car
speed^v& in a 10031003100 lattice when we drive the system
slowly as discussed in the text. The solid and dashed curves re
sent the evolution of the system when cars are slowly added to
removed from the system, respectively.
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5304 PRE 60H. F. CHAU AND K. Y. WAN
already jammed by colliding into the percolating cluster, t
average asymptotic car speed is low. A typical low spe
recurrent configuration in a 53535 lattice is shown in Fig.
4 as an illustration@6#.

Recall that a percolating backbone is essentially a o
dimensional object. Therefore, if the background lattice
one or two dimensional, all other moving cars will event
ally merge into the percolating backbone leading to a co

FIG. 4. A typical low speed recurrent configuration in a 535
35 lattice making up of five full speed cars with^v&51/14. We
denote the five full speed cars by bold arrows.
e
d

e-
s
-
-

pletely jamming configuration. The situation is complete
different when the background lattice is at least three dim
sional. In this case, since both the trajectories of moving c
and the percolating backbone are essentially o
dimensional objects, trajectories of some moving cars m
not intersect with the percolating cluster. Thus, if the c
density is small enough, some residual freely moving c
may present in a recurrent configuration giving rise to
observed low speed phase.

As the car density gradually increases in the low spe
phase, the size of the percolating cluster in the recurr
configuration increases. It becomes more and more diffi
for the system to accommodate residual freely moving c
Hence,^v& gradually decreases until it eventually reach
zero. The transition from the low speed phase to the co
pletely jamming phase is, therefore, smooth.

V. CONCLUSIONS AND OUTLOOK

In summary, we study the phase diagram of the thr
dimensional BML model. Similar to the two-dimension
model, a fluctuation-induced first order phase transition
asymptotic average car density^v& is observed at car densit
rc1

(3)50.1860.01. We also discover a new low speed pha

which is absent in one- and two-dimensional models. W
argue that the existence of this low speed phase is geom
cal in nature, and hence this phase will exist in higher
mensional BML models as well. It is instructive to nume
cally verify our claims in the four-dimensional mode
Unfortunately, the amount of computation involved w
probably be too high for us at this moment. Finally, o
simulation suggests that the transition from the low spe
phase to the completely jamming phase is smooth and oc
at car densityrc2

(3)50.3260.02.

A number of open questions remain. For instance, we
not understand why thêv&5M /(N11) high speed state
are preferred over thêv&51 full speed states in the three
dimensional model. And it is meaningful to investigate if th
behavior persists in higher dimensions.
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